



MASTER'S DEGREE PROGRAMME // M2





## MECHANICAL ENGINEERING

*Computational Solid Mechanics* 

## MASTER IN MECHANICAL ENGINEERING

**Computational Solid Mechanics** 

2 semesters taught in French, including 4 months of internship in coaccreditation with École Centrale de Lyon and Université de Lyon 1

## **Description**

The Computational Solid Mechanics track in the Mechanics master's program (M2) focuses on the mastery and development of innovative numerical methods (Big Data, X-FEM, Proper Generalized Decomposition, stabilized finite elements, etc.) in fluid, solid and structural mechanics, integrating the associated multi-scale or multi-physics couplings. The teaching is positioned at the interface between complex modeling, digitization and resolution, ranging from elasto-static or Newtonian fluids to the treatment of temporal non-linear problems (cyclic plasticity, contact, rupture, capillarity, etc.). The topics covered are directly linked to current industrial issues, with a focus on the trade-off between fidelity and robustness for optimum algorithmic and energy efficiency.

## **Objectives**

Train experts in the development of innovative simulations in the context of virtual engineering, which is increasingly present in industry. With a strong background in the mechanics of materials and structures, coupled with a mastery of cutting-edge numerical tools, the proposed course aims to train executives with the ability to manage R&D projects directly related to current societal concerns: structural lightening, durability control, dynamic sensing, etc.







| COMMON COURSES*<br>12 ECTS            | Finite element method in mechanics                                |
|---------------------------------------|-------------------------------------------------------------------|
|                                       | Modeling in mechanics<br>of materials                             |
| SPECIALIZATION<br>COURSES*<br>12 ECTS | Big data, model reduction                                         |
|                                       | Multi-physics couplings for processes                             |
|                                       | Advanced numerical<br>methods                                     |
| <b>OPENING COURSES*</b><br>6 ECTS     | Intensive calculations                                            |
|                                       | Numerical methods<br>for simulating dynamic<br>mechanical models  |
| COMPLEMENTARY<br>COURSES*<br>9 ECTS   | English for business communication level 2                        |
|                                       | Socio-economics of business                                       |
|                                       | <ul> <li>Internship preparation.</li> <li>Bibliography</li> </ul> |
| INTERNSHIP*<br>21 ECTS                | Minimum 16 weeks                                                  |
|                                       | Written report                                                    |
|                                       | Oral presentation                                                 |